Vanishing of Littlewood-Richardson polynomials is in P
نویسندگان
چکیده
J. DeLoera-T. McAllister and K. D. Mulmuley-H. Narayanan-M. Sohoni independently proved that determining the vanishing of Littlewood-Richardson coefficients has strongly polynomial time computational complexity. Viewing these as Schubert calculus numbers, we prove the generalization to the Littlewood-Richardson polynomials that control equivariant cohomology of Grassmannians. We construct a polytope using the edge-labeled tableau rule of H. Thomas-A. Yong. Our proof then combines a saturation theorem of D. Anderson-E. Richmond-A. Yong, a reading order independence property, and É. Tardos’ algorithm for combinatorial linear programming.
منابع مشابه
Littlewood-richardson Coeecients and Kazhdan-lusztig Polynomials
We show that the Littlewood-Richardson coeecients are values at 1 of certain parabolic Kazhdan-Lusztig polynomials for aane symmetric groups. These q-analogues of Littlewood-Richardson multiplicities coincide with those previously introduced in 21] in terms of ribbon tableaux.
متن کاملLittlewood-Richardson coefficients and Kazhdan-Lusztig polynomials
We show that the Littlewood-Richardson coefficients are values at 1 of certain parabolic Kazhdan-Lusztig polynomials for affine symmetric groups. These q-analogues of Littlewood-Richardson multiplicities coincide with those previously introduced in [21] in terms of ribbon tableaux.
متن کاملVanishing and Non-Vanishing Criteria for Branching Schubert Calculus by
Vanishing and Non-Vanishing Criteria for Branching Schubert Calculus by Kevin Purbhoo Doctor of Philosophy in Mathematics University of California at Berkeley Professor Allen Knutson, Chair We investigate several related vanishing problems in Schubert calculus. First we consider the multiplication problem. For any complex reductive Lie group G, many of the structure constants of the ordinary co...
متن کاملRc - Graphs and a Generalized Littlewood - Richardson Rule
Using a generalization of the Schensted insertion algorithm to rcgraphs, we provide a Littlewood-Richardson rule for multiplying certain Schubert polynomials by Schur polynomials.
متن کاملThe Recursive Nature of Cominuscule Schubert Calculus
The necessary and sufficient Horn inequalities which determine the nonvanishing Littlewood-Richardson coefficients in the cohomology of a Grassmannian are recursive in that they are naturally indexed by non-vanishing Littlewood-Richardson coefficients on smaller Grassmannians. We show how non-vanishing in the Schubert calculus for cominuscule flag varieties is similarly recursive. For these var...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1708.04228 شماره
صفحات -
تاریخ انتشار 2017